Intraosseous access








By: Gavin Hoey and Owen Keane

Posted on: December 10, 2020


Category: Emergency , Pre-Hospital , Prehospital

Intraosseous access



Cite this article as:
Gavin Hoey and Owen Keane. Intraosseous access, Don't Forget the Bubbles, 2020. Available at:
https://doi.org/10.31440/DFTB.31005

It is 15.50 hrs on a Tuesday when the call comes in. A 3-year-old female is in cardiac arrest.

When it is an adult patient, we can manage this without even breaking stride…but as you begin to formulate your action plan, your brain now needs to focus on areas that you don’t tend to dwell on when it comes to a grown-up patient – How will I gain access? What are my medication doses? What are those novel airway features again? While we are more confident and experienced managing adult patients in cardiac arrest, it is important to remember that – Familiarity Breeds Contempt” – and this is different.

We are weaving in and out of rush hour traffic while deriving our WETFAG when we get updated information that an FBAO* may have led to this arrest.

*EM/prehospital speak for foreign body airway obstruction

My colleague and I discuss a plan of action:  we allocate roles, make a difficult airway plan, and agree to ensure that exceptional high-quality Basic Life Support is delivered in the first instance. We know that fundamentals matter most.

We discuss access options:

  • Intravenous (IV) – but will it be possible?
  • Intraosseous (IO) – we know that this is both possible and effective.

On arrival we find a 3-year-old old girl lying in a playroom. She is being tended to by a crew of firefighter-paramedics who have arrived just ahead of us.

I can see she is unresponsive but breathing. Her breathing does not look normal. She looks very unwell.

I get a handover from those on scene while Simon gets straight to work with airway assessment.

We voice our plan to the team:

  • Team role allocation reaffirmed.
  • Assess and manage the airway.
  • Assess and assist breathing.
  • Get access.
  • Complete a rapid A-E assessment to ensure we are not missing vital information.
  • Maximise team dynamics, performance, and optimise management of scene environment.

The decision to proceed with vascular access in paediatric patients is not an easy (or common) one to make for pre-hospital practitioners. Knowing that this patient was “Big Sick” makes the decision somewhat easier, but not so the challenge.  

When to IO?

Intraosseous (IO) is a rapid and effective method for accessing non-collapsible marrow veins without sacrificing pharmacokinetics.

Any delay in establishing vascular access can be potentially life threatening.

The Royal Children’s Hospital Melbourne states In decompensated shock IO access should be established if IV failed or is going to be longer than 90 seconds”.

The decision to gain IO access should be considered in the following scenarios

Selecting the site

How do we choose a site for placing an IO line and what can influence our decision?

Is the case medical or trauma? If it is a trauma, where are the injuries? Fractures at, or above, the insertion site can compromise the integrity of the underlying anatomic structures. Importantly, what sites are practical and accessible to me in this case right now?

Having never attempted IO access on a paediatric patient before, I stuck with what I had done most frequently in training and decided on “proximal tibia” as my site for IO insertion.

“In the pre-hospital environment, it is sometimes as important to know when not to do something as it is to know when to do something”

Justification for tibial IO access in this not-arrested patient was based on the following case elements for me:

  • IV access had failed.
  • I had a small child, obtunded and unresponsive, requiring airway and breathing support, tachycardic, tachypnoeic, and hypoxic. Big Sick.
  • Activities “up top” were busy, very busy – although the airway did not appear to have a FBAO, it did require my colleague to maintain a good seal. I did not feel positioning for humeral IO was viable at this moment.
  • This was a medical case with no apparent lower limb or pelvic trauma.

Of course, one must always consider contraindications before proceeding with IO access.

Contraindications

  • Fractures at (or above) the insertion site
  • Crush Injuries
  • Ipsilateral vascular injury
  • Illness or anomalies to the underlying bone e.g. osteomyelitis, osteogenesis imperfecta, osteoporosis.
  • Previous failed IO attempts at this location
  • Overlying skin infection
  • Pain associated with infusion may be considered a reason not to continue using the line if it cannot be controlled.

Landmarks

I considered all potential options for IO insertion before choosing the site most familiar to me– proximal tibia. Other possible sites included:

  • Distal tibia
  • Distal femur
  • Humeral head
Intraosseous insertion sites

Anatomical landmarks for the insertion site depend on whether you can palpate the tibial tuberosity or not. The tibial tuberosity does not develop until around 2 years of age. If you cannot feel the tibial tuberosity in the smaller child, palpate two fingerbreadths down from the inferior border of the patella, then one finger breath medial to this point. Where the tuberosity is palpable, just go one fingerbreadth medial to it.

Target flat bone and pinch the tibia (especially in the very young patient) to reduce bone mobility, and to prevent the skin rotating with the driver before starting needle insertion.

Surface anatomy for insertion around knee
Landmarks for proximal tibial insertion

This is a small child. While it might seem like there is no time to hesitate; training, planning, awareness, and observation are vital I recalled the phrase “Power and Pressure”. This was not going to require as much force as I usually use in adult IO insertion. “Let the driver do the work” and be careful not to overshoot through the bone.

Placing the needle over the landmark site at 90 degrees, I visualised the line I wanted to drill. After careful, but firm, passing of the needle through the skin, I pressed the trigger. After the first pop, I was careful not to overshoot. Anticipation here is key so avoid putting too much pressure on the driver. Similarly, be careful to avoid excessive recoil when you feel you have reached the medullary space as this can result in dislodgement of the needle.

But am I in the right space?

Attempt to aspirate marrow from your line (though it might not always be present). Flushing saline through with little to no resistance is very reassuring. No Flush = No Flow!

The line needs to be secured in place and the extension tubing attached properly with no identifiable leak points. What we give through the line should generate a physiological response – if it does not, always consider if the line has become displaced.

The proximal tibial site may not always be an option, so we where else can we go?

Medial view of ankle
Landmarks for distal tibial insertion

Distal Tibia

Place one finger directly over the medial malleolus; move approximately 3 cm or 2 fingerbreadths proximal and palpate the anterior and posterior borders of the tibia to assure that your insertion site is on the flat center aspect of the bone. 

Distal femur surface anatomy
Landmarks for distal femoral site of insertion

Distal Femur

Midline, 2-3 cm above the external condyle or two fingerbreadths above the superior border of the patella. This is often an accessible site due to children having less muscle bulk. To ensure you avoid the growth plate, the leg should be outstretched when performing your landmarking’s above and aim about 15 degrees cephalad too.

Landmarks of the humeral head for IO insertion
Landmarks for insertion in the proximal humerus

Humeral Head:

The humeral head represents an excellent access point for large proximal vasculature (lies closer to the heart). Flow rates may be higher here too due to lower intramedullary pressures. The greater tuberosity secondary ossification centre doesn’t appear until about 5 years of age making palpation of this landmark more of a challenge in the younger child.  For this reason, it is more often used in older children, typically over 7 years of age or only in those in whom the anatomy can be readily identified.

You may need to consider using a longer needle here due to the larger amount of soft tissue over this axillary area.

The insertion site is located directly on the most prominent aspect of the greater tubercle. 1 cm above the surgical neck. The surgical neck is where the bone juts out slightly – you will find this by running a thumb up the anterior aspect of the humerus until you feel a prominence. This is the greater tuberosity. The insertion site is approximately 1cm above this.

It is important to position the arm correctly.

hand on belly or thumb to bum position for humeral IO
Positioning the arm for humeral IO

Humeral IO placement techniques:

  • Thumb to Bum – Move the patient’s hand (on the targeted arm) so that the patient’s thumb and dorsal aspect of hand rest against the hip (“thumb-to-bum”).
  • Palm to umbilicus – Move the patient’s hand (on the targeted arm) so that the palm rests over the umbilicus, while still maintaining the elbow close to the body.

Site versus flow

As mentioned above, the proximal humerus is very close to the heart and this, coupled with seemingly lower intramedullary pressures, lends itself to higher flow rates when compared to the lower limb sites.

Important to note, however, that any abduction or external rotation of the arm during resuscitative efforts (easy to picture this happening when moving your patient from scene to ambulance!) can lead to dislodgment of you IO. Nice and easy does it.

An awake IO?

The sound of the driver buzzing brings back dentist chair memories for all of us. No less so for your patient who, if conscious during the insertion, will be particularly anxious and upset. Anticipate this and control anxiety with reassurance, distraction, and parental explanation if you can.

Pain in the conscious patient with an IO in situ can be from the area around the insertion site as well as the volume expansion caused by infusion. A small volume of 2% lidocaine can be given through the line prior to commencing the infusion to help with pain – this is slowly infused over 120 seconds, left for 60 seconds, then flushed with 2-5ml of saline.

Always consider line dislodgment or compartment syndrome with gross discomfort and inspect/flush the line to ensure it is still functioning adequately.

Size of IO – credit to Tim Horeczko

What about the gear itself?

The EZ-IO 10 driver and needle Set is a semi-automatic intraosseous placement device commonly found in our EDs. All needle catheters are 15 gauge giving gravity flow rates of approximately 60-100ml/min. The use of pressure bags can greatly increase these rates. It is important to make sure you pre-flush the connector set to ensure no residual air can be injected after attachment.

Fail to Prepare, Prepare to Fail”. Practice really makes perfect and so frequent familiarisation sessions are encouraged to get used to both the IO equipment and identifying the various access sites and their relevant anatomy.

A recent study by Mori et al (2020) showed a high rate of successful placement at 92.7%. This paper also described the complications encountered with the use of EZ-IO in a paediatric population in a paediatric ED. The complication rate seems to be consistent across all needle sizes at around 21%. Complications (particularly the more commonly occurring extravasation and skin) are important considerations for PEM IO training programmes.

Potential complications

  • Extravasation or subperiosteal infusion – the highest reported complication in the Mori paper was 17% of all IO insertions. This occurs if you fail to enter the bone marrow or happen to go through the entire bone itself and overshoot the medullary canal. Dislodgement of a well-placed IO line during resuscitation can lead to this occurring too.
  • Dermal abrasion4% in Mori study. A more recently described complication of using the semi-automatic IO approach, these injuries can occur due to friction from the rotating plastic base surrounding the EZ-IO needle. While these all seemed to settle with conservative treatment it is important to watch out for this during insertion.
  • Compartment syndrome – rare…but the smaller the patient the higher the risk.
  • Fracture or physeal plate injury.
  • Osteomyelitis – very rare, reported as 0.6% (Rosetti et al).
  • Fat embolus

The use of POCUS to rapidly confirm intraosseous line placement and reduce the risk of misplacement with extravasation has been discussed in recent times. This paper by Tsung et al in 2009 comments on its feasibility and describes using colour Doppler signal with a saline flush to identify flow in the bone around the IO to confirm placement. Misplacement may also be identified if flow is seen in the soft tissues rather than bone.  


Tags: Emergency , Pre-Hospital , Prehospital


Welcome to the healthcare-only HIPAA - GDPR compliant cloud. Exclusively hosted on a HPC environment!

Learn more or start today by choosing your secure HIPAA - GDPR compliant server's Operating System bellow and pick the package that's best for you.

BIPmd makes it simple to launch in the cloud and scale up as you grow – whether you’re running one virtual machine, thousand or more.



Windows VPS options and add ons
Linux VPS options and add ons

Looking for a custom solution?

Our technicians can provide you with the best custom-made solutionss on the market, no matter whether you're a small business or large enterprise.

Get in touch